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Abstract

Eigenfunctions of elliptic boundary value problems can be well approximated by entire
functions of exponential type and, as a consequence, it is possible to transfer approximation
results with entire functions to eigenfunction expansions. Here, in particular, we consider
Jackson and Bernstein type theorems.
© 2003 Elsevier Science (USA). All rights reserved.
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Let us consider the Dirichlet problem for the Laplace operator — 2}1:1 9%/ 8xj2 on
a bounded open domain Q in R”. An eigenfunction ¢,(x) associated to the
eigenvalue A% is a non-zero solution to the problem

——§;(x) = 2¢,(x) if xeQ,
J= J

¢,(x) = if xedQ.

There exists a positive sequence {/12 } of eigenvalues and an orthonormal system of
eigenfunctions {¢,(x)} complete in 1?(Q) and one can define a Fourier transform
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and Fourier series,

FI() = /Q OBy ) =S FL2)().

~

Similarly the exponentials {exp(2mify)} are eigenfunctions of the Laplace

. . 2 . . . .
operator on R" with eigenvalues {47|¢["} and in this case the eigenfunction
expansion coincides with the classical trigonometric Fourier expansion,

67(6) = [ SO)exp(-2min) v f(x) = [ B explmin) .

Since functions on Q can be extended to all R” by putting them equal to zero
outside Q, it is natural to compare these two expansions. Indeed it turns out that they
are similar, at least away from the boundary 0Q. Recall that, by the Paley—Wiener—
Schwartz theorems, the distributions with Ff (&) =0 if |¢|>T coincide with the
distributions which are entire functions of exponential type 2z 7. By analogy one can
define linear combination of eigenfunctions of type A by the condition Zf(1) = 0 if
A>A. Then, roughly speaking, our main result is that strictly inside Q finite linear
combinations of eigenfunctions of type A can be arbitrarily well approximated by
entire functions of exponential type 2A and vice versa. As a consequence, in order to
approximate a given function by linear combinations of eigenfunctions it suffices to
approximate the function by entire functions of exponential type and then
approximate the entire functions by eigenfunctions. In this way, one easily obtains
analogous of the Jackson and Bernstein theorems, the degree of approximation of a
function by linear combinations of eigenfunctions is controlled by the modulus of
continuity and vice versa. The main tool used in these approximations is the
synthesis of certain operators by fundamental solutions to the wave equation. This
approach has been introduced in the study of the spectral properties of elliptic
operators on manifolds and by now it is quite classical.

Approximation theorems for expansions in eigenfunctions of the Laplace operator
on manifolds with a rich structure, such as Lie groups or symmetric spaces, are
already known. In this case the eigenfunctions are special functions and with
convolutions one can construct approximations. On the contrary, for general
domains one cannot rely on explicit expressions for eigenfunctions and, since there
are no translations, there is no convolution. However, natural substitutes for
convolutions are operators defined by spectral analysis. Given a function m(1) on

R, , one can define the operator m(\/Z) via spectral decomposition by

m(VA)f(x) =) mA)Tf(L);(x).

A

Then, by taking the cosine expansion of m(4) one obtains
+ 00
m(VA) f(x) = / (1) cos(tv/A) £ (x) dr.
0

Hence the operator m(y/A) can be synthesized by means of fundamental solutions
cos(tv/A) to the wave equation §*/9¢> = A. Now the basic observation is that, by
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finite propagation of waves, at least for small times and away from the boundary 0Q
the solutions to the wave equation on Q and on R” coincide. This allows to compare
the operator m(v/A) on Q with the corresponding one on R". In particular, we shall
see that if m(4) is smooth, with m(1) =1 if A<1/2 and m(2) =0 if A>1, then
m(v/A/A) is an approximation of unity by eigenfunctions of type A. Operators of
this type will be our basic tool in constructing approximations.

In this paper we consider eigenfunctions of the Laplace operator with Dirichlet
boundary conditions, but results and proofs for other boundary conditions are
analogous as soon as we stay away from the boundary. The paper is essentially self-
contained and we want to mention only a few references. As general references on
approximation, and in particular the classical Jackson and Bernstein theorems on
Euclidean spaces, see e.g. [3,7]. For approximation by eigenfunctions of the Laplace
operator on Lie groups and symmetric spaces see e.g. [2,4] and for approximation on
manifolds see the survey [6]. However, it seems to us that the results in these papers
do not overlap with ours and, in any case, the techniques used are quite different.
For a wave equation approach to the study of spectral properties of differential
operators and to the harmonic analysis on manifolds see e.g. [5, XVII]; [9, XII]. See
also [1,8] for a wave equation approach to the convergence of Fourier integrals.

The results in this paper are part of the dissertation of F. Masiero
“Approssimazione con autofunzioni di operatori differenziali ellittici” at the University
of Milano, 1999.

1. Approximation of eigenfunctions

We recall that the Sobolev space W7 (R") and W;(Q), or more generally W;(A4),
can be defined via the norms

12
1l = { [ 1+ eV IEr@OR a2}

1/2
1)l ey = {Z (1 +22)h<?"f(l)|2} ,

5 1/2
dx} .

1)l = 32 { /
ef<h L4

In the definition of W; (A4) the index / is a non-negative integer, but in W3(Q) and
W3 (R") one can allow —oo <h< + oo. It is well known that if A<Q, then W;(Q)
and W7 (R") are continuously imbedded in W; (A4). Also, under suitable assumptions
on the domain Q the classical Sobolev imbeddings hold, in particular functions in
W3 (Q) and W7 (R") with &>n/2 are Lipschitz continuous of order 4 — n/2 in Q and
R". Moreover, ' (Q) and L'(R") are contained in W3(Q) and W3(R") if h< — n/2.

a(X
e
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However, for what follows we need a milder requirement, namely we assume that
L'(Q) is contained in some of the spaces W3(Q), any / suffices.

Now let m(s) be a smooth bounded even function on R with compact support, or
rapidly decreasing and with rapidly decreasing derivatives. Define mij (s) = m(s/A)
and

AN (x mex () (x).

In what follows m(0) = 1 and A — oo, so that at the limit one formally recover the
Fourier expansion of the function. Since the multiplier m(s) decreases rapidly, the
operator ./ » is well defined on integrable functions on Q. Extend such functions to
all R" by putting them equal to zero outside Q and define

Ma f(x / mp (2n|E))Ff (&) exp(2miéx) dE.

Since M4 is a convolution operator with a smooth fast decaying kernel Kj(y) =
A"K(Ay), this operator enjoys many nice properties and in particular it is bounded
on the most common function spaces. .#4 f(x) and My f(x) are expansions in
eigenfunctions of the Laplace operator in Q and R”", respectively. The main result of
this section is that away from 0Q these two expansions are similar and the Sobolev
norms of #x f(x) —Ma f(x) are small. Thus, the nice properties of M, are
inherited by 4.

Theorem 1.1. Let A be an open set with compact closure in Q. Then for every non-
negative integers h and k there exists ¢ such that

00 (3) = M f Ol <eh™ [ 1709,

Proof. In what follows, we may assume that A— + o0. Let y/(s) be a smooth even
test function with Fourier cosine transform
A 2 +0o0

() == V(s) cos(ts) ds

T Jo

vanishing for |¢f|>distance(4,0Q). Also assume that [ y(s)ds=1 and

fj; W (s)s/ds =0 for j=1,2,... . Beside the operators .#, and M, associated to
the multiplier m (s), we also consider the operators /"y and N, associated to the

regularized multiplier mp * ¥(s) = ffof ma(s — r)y(r) dr. We have
M [f(x) =My f(x)
= (AnS(x) = VaS (%) + (Naf (x) = Naf(x)) + (NaS(x) = Maf(x))-

In order to complete the proof it suffices to show that if x is in 4 then A 5 f(x) =
Na f(x), while A f(x) — A A f(x) and My f(x) — Np f(x) are small. [

Lemma 1.2. For every x in A we have N 5 f(x) = N f(x).
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Proof. We synthesize both operators by means of fundamental solutions to the wave
equation:

D mAx (AT (2)$;(x)
2

- ;(/OMC (ma )" (1) cos(4r) dt) F1(2)$;(x)

[ s (Z COS(M)?/’(Z)@.(X)) d
- / O () cos(tVR) £ (x) .
0

where cos(#v/A) f(x) solves the Cauchy problem for the wave equation in R x Q,

0? no 9
ﬁu(t,x) —j:1 a—x}u(z‘,x) =0 if reR and xeQ,
u(t,x)=0 if 1eR and xe0Q,
u(0,x) = f(x) if xeQ,
%u(O,x) —0 if xeQ.

Similarly

/R” mp x Y (2n|E))Ff (&) exp(2mié - x) dé&

= [ A b 0 cost VRN ()
0

where this time cos(rv/A) f(x) solves the wave equation in R x R”,

o no P

Wu(t,x) 7_,':21 ?}u(t,x) =0 if teR and xeR",
u(0,x) = f(x) if xeR",

gu(mx) _ if xeR".

Since waves propagate with finite speed and cos(v/A) f(x) depends only upon
values f(y) with |y — x|<t, for x away from the boundary 9Q and small time ¢ the

solutions to the wave equation in R” and Q coincide. Since ¥(f) =0 if
t=distance(A, 0Q), the lemma follows. O
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Lemma 1.3. For every h and k,
A () = s S Dllagey <eh™ [ 170y

IMA £ () = NS () gy <A™ / 1O dy.

Proof. In order to estimate the Fourier coefficients of .# f(x) — A" f(x), we write

/%mAs—r ZmA 1) dr

0

|ma x Y (s) — mp(s)| =

<A [ O s o) a

A —+ o0
<A sup (s =)/ / e ()] di
kY <isiy, —o0

Ak
o s el ol
o0 <s<+t0 > s1/2)

Since both m®)(s) and y(s) are rapidly decreasing, for every ¢ we have

b2 m® (s = r)/A)|<e(l +5/A)D) P <A (1 +57) 712,
ri<ls|/2,

/ |”|k|l//(r)\ dr<c(1+ )92
{Ir|>1s/2}
Hence, collecting these estimates we obtain

Ima * W(2) — ma(A)| <cA™*(1 + 22792,
This implies that

D (ma(2) = ma x () TS (2)$(x)

A

W;(Q)

1/2
= {Z (14 22" lma(2) — mp = (2)| 1 (2) 2}
A

1/2
<cAk{Z (1 +12)’1—q|9f(z)|2} .

The desired estimate now follows from the assumed imbedding of 1.'(Q) into
Wﬁfq(Q) if h— g is sufficiently negative. This proves the first inequality of the

lemma, the proof of the second is similar. [J

Remark. As mentioned in the introduction, there is an analog of the above theorem
for expansions in eigenfunctions of the Laplace operator with arbitrary boundary
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conditions. It suffices that the laplacian with the boundary conditions is self-adjoint
and it makes sense to consider eigenfunction expansions. Indeed, in Lemma 1.2 the
boundary condition u(¢, x) = 0 if xe9Q for solutions to the wave equation plays no
role and it can be replaced by a different one. Similarly, Lemma 1.3 depends only on
the imbedding of L'(Q) into W;(Q) if 4 is sufficiently negative.

The theorem has the following corollaries.

Corollary 1.4. Let A be an open set with compact closure in Q and let 1<p< + 0.
Then the operator My is continuous from 1F(Q) into P(A), with norm uniformly
bounded in A.

Proof. The result for eigenfunction expansions follows from the corresponding one
for classical trigonometric expansions. Indeed,

{[1ansor dx}l/p
<{ [ Hins ) = wan sy dx}l/p+{ [ maror dx}

By the above theorem and the Sobolev imbeddings, .#a f(x) — M f(x) is a
continuous function, bounded on 4 by the norm of f(x) in L'(Q). Since 4 and Q
have finite measure, the boundedness of .#Zx — M, from [7(Q) into 1’(A) follows.

Moreover, the operator M, is bounded on L”(R") and, a fortiori, from L7(Q) into
17(4). O

1/p

Corollary 1.5. Let A be an open set with compact closure in Q and let
h>0, k>0, 1<p< + oo. Then given a finite linear combination of eigenfunctions
P(x) =, A F P(1)p,(x), there exists an entire function of exponential type Q(x) =

f{2n|§\<2/\} FQ(&) exp(2mil - x) d& such that

Lore] ol frors)”

1P(3) = Qg <eh™ [ 1PO)] dy.

Vice versa, an entire function of exponential type A can be approximated in A by a
linear combination of eigenfunctions of type 2A with an error dominated by ¢A™ .

Proof. Let .#, and M, be the operators associated to a smooth even multiplier
m(s), with m(s) = 1 if |s| <1 and m(s) = 0 if |s| = 2. If P(x) is a linear combination of
eigenfunctions of type A, then P(x) = .#P(x) and Q(x) = M P(x) is a function of
exponential type 2A with the required approximation properties.

The proof of the vice versa is similar. Let Q(x) = MAQ(x) be a function
of exponential type A. Restrict Q(x) to Q and define P(x) = #x(Qyq)(x).
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Then
||P(x) — Q(X)Hwﬁ(A)
S|4 A(Qua) (x) = MA(Qra) (X)llw2 () + [IMa(Qrta — @) (X)llw2(a)-
The first summand is controlled by the above theorem. In order to control the
second summand observe that, since all derivatives of the kernel K (y) = A"K(Ay)

associated to M, have fast decay at infinity and (Qyq — Q)(x) =0 in Q, all
derivatives of M (Qyq — Q)(x) are small in 4. Indeed if 1/p+1/g =1,

afl
(07~ O

| ARG - )00 dy\

n_g OX*

1/q 1/p
<cA”+|“k{/WQ|x—y|_kqu} {/RHQ(x)V’dx} . O

2. Bernstein and Jackson theorems

As we have seen, linear combinations of eigenfunctions can be well approximated,
at least locally, by entire functions of exponential type, and vice versa. Hence it is
natural to conjecture that, at least locally, eigenfunctions and entire functions have
the same approximation properties. Here, in particular, we consider Jackson and
Bernstein type results for eigenfunction expansions, but we start by proving a local
Jackson type theorem of approximation by entire functions of exponential type.

Theorem 2.1. Let A and B be open sets with A< B and let h and k be non-negative
integers. Then, given f(x) in LP(R") with 1<p< + o0, there exist functions Q(x)
entire of exponential type A with

{ [ 1100~ oo dx}l/p
< {13

P

1p /p
J h X+7 X cA 7k X X
>0 (}.)f( ) d} st [ reorasf

Proof. As in the classical proof of the Jackson theorem, one can construct kernels
Kx(y) = A"K(Ay) of exponential type A with fast decay at infinity and such that

h
f)=Kaxf(x) = | Ka(y)) (—)j@)f(x +Jjy) dy.

R" =
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Hence

{10~y ertop dx}l/p
h p /p
R~|KA {/Z < ) (x+jy) d} dy.

0
Now, the moduli of smoothness satisfy the trivial estimate

{/ pd }l/p<2h{/w|f(x)|ﬂ dx}l/p.

Moreover, as soon as all sets 4 + jy with 0<j</ are in B,

U ool

Xh; ( ) (x+jy)

Zh: ( ) (x+j»)

=0

zh; ( ) (x+jy)

P 1/p
<(1 +A|y| sup / dx .
I<1/A

Observe that if 4 + jy for some 0<;j</ is not completely contained in B, then
[v|=¢>0. Hence, since Kx(y) is rapidly decreasing, for every i we have

p 1/p
K(y { / d} dy
R”

h A h
(=)’ <j>f(x +7y)

h
</Rn(1 + Aly|) |KA(y)|dyys:lp/A{/B ;
1/p
2h p .
! /{y|>s} |KA(y)| y{An |f(x)| X}

h h » 1/p
x N\J . . d
<CyS§5A{/B,ZO( ) (j)f(xﬂy) x}

+ cAk{/Rn (P dx}l/p. 0

Theorem 2.2. Let A and B be open sets with A< B and B<Q, and let h and k be non-
negative integers. Then, given f(x) in LP(Q) with 1<p< + o0, there exist finite

zh: ( ) (x +»)

=0

p 1/p
dx}
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eigenfunctions expansions P(x) =Y, \ F P(1)¢;(x) with

{10 -peor dx}l/p
{/ o (e af e {frora”

Proof. By the above theorem, there exist functions Q(x) entire of exponential type
A/2 with the required approximation properties. Moreover, by Corollary 1.5, these
entire functions can be approximated in the norm of Wf(A) by linear combinations
of eigenfunctions P(x) of type A with an error dominated by A7, Since the norm
W2(A4) dominates the norm 17(A4) when s is large, we finally obtain

{[1re |1’dx}l/p 1/ 1/
{/|f owras} +{ [ low - reora}

h A 1/p
<13{/ 2 <—>’< j>f<x+m dx}

J=0

+ c/\k{/ﬂ|f(x)|” dx}l/p. 0

Theorem 2.3. Let f(x) be a function in 17 (Q) with 1 <p< + oo, also assume that for
some positive constants o and ¢ and every A>0 there exists finite eigenfunctions
expansions P(x) =3, n F P(A)$;(x), such that

1/p
{/ |f(x x)I dx} <cA%
Then on every open set A with compact closure in Q the function f(x) is Lipschitz of

order o, that is if h>a,
» 1/p
dx} <cly”.

h A h
{/ > (—)f( .>f<x+jy>
A J
Proof. Let P;(x) be eigenfunctions expansions of type 2/ with

1/p
{/ |f(x) x)I dx} <27,

P
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In particular, f(x) = Py(x) + f:OOC (Pj+1(x) — P;j(x)). By Corollary 1.5 there exist
functions Q;(x) of exponential type 2/*2 with

I/p 1Up
{ / |Q_,»<x>|f’dx} <c{ / Pf+1(x)P_/(X)|”dx} <2,
Rll Q

[1Pj1(x) = Pi(x) = Q5() Iz <C2*kj/Q |Pra1(x) = Py(x)| dy <2 "0,

We can write

+ o + o
f(x)=Po(x)+ D Q%)+ > (Pi(x) = Pi(x) — Qj()).
j=0 j=0
Py(x) is analytic in Q and, by Bernstein theorem in R", ;‘6“ Q;(x) is Lipschitz of

order « in all R". Finally ;;000 (Pj11(x) — Pj(x) — Q;(x)) converges in W3(A4) and if
h is suitably large functions in this space are Lipschitz of order «. We conclude that
also f(x) is Lipschitz of order o in 4. O

We conclude with some remarks.

Remark. The term A ~*{ Jo lF (X)) dx}l/p in our Jackson type theorem is necessary.
Indeed, if f(x) is a polynomial of degree /4 —1 then the differences

Zf:o(—)j (ﬁ’)f(x +jy) vanish, while f(x)# P(x). On the other hand, when non-

zero the modulus of smoothness is at least of the order of A", hence if h<k it
dominates the term A~

Remark. It is possible to give a localized version of our Bernstein type theorem.
Let 4 and B be open sets with A= B and B<Q. If for every A>0 there exist

P(x) =Y, A ZP(A)$,(x) with { [, [P(x)F dx}'P<cAF and {[,|f(x) — P(x)f’
dx}""? <eA™*, then f(x) is Lipschitz of order « in A. The proof follows from a
localized version of Bernstein theorem on Euclidean spaces.

Remark. The above Jackson and Bernstein type theorems guaranty regularity or
approximation not in all the domain Q, but only in open sets at positive distance
from the boundary 9Q. The following examples show that indeed some restrictions
seem necessary. The eigenfunctions of the Dirichlet problem in Q = (0, 1) are the
trigonometric functions {v/2 sin(mkx)};; and the eigenfunction expansions are the
classical sine Fourier series. Let f(x) be Lipschitz of order « in (0, 1), that is | f(x) —
f)|<c|x — y|" if 0<x, y<1. Then our Jackson theorem guaranties the existence of
trigonometric polynomials with {f:ﬁg |f(x) = 30—, ex sin(mkx) P dx}'? <en for
£>0, but the inequality with ¢ = 0 may fail. Indeed if true then, by the classical
Bernstein’s theorem, the odd extension of f(x) should be Lipschitz of order o in
(—1,1) and this would impose extra conditions on f(x) in a neighborhood of x =0
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and 1. To be more explicit, the function f(x) = 1 is smooth in (0, 1) but cannot be
uniformly approximated in (0,1) by sine functions which vanish at zero. More in
general, f(x) = x*(1 — x)” is smooth in (0, 1) but the uniform approximation of this
function has not better order than n™*.
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